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Metal shaped-charge jets (SCJ) that are high-speed elongating axisymmetric bodies are known to be 
formed as a result of explosion of a shaped charge lined with a thin layer of metal [1, 2]. The process of 
explosive formation is characterized by the difference in axial velocity across such jets. The velocity of the 
head elements is of the order of the orbital velocity, and the tail elements move, as a rule, at a velocity of 
about 2 km/sec. The axial-velocity distribution along SCJ gives the initial gradient gz0 (initial axial strain 
rate) the local value of which is determined by the ratio of the axial-velocity difference AVz to the initial 
length Alel of an SCJ element. This length is usually assumed to be equal to the length of the corresponding 
section of the forming metal lining (shaped-charge lining). The initial axial-velocity gradient varies along the 
SCJ and determines the initial strain rate of the jet elements. For most SCJ, the characteristic values of the 
initial gradients are 104-105 sec -1. 

Under the action of the velocity gradient, SCJ in free flight are stretched in the axial direction 
with simultaneous decrease in their longitudinal sizes. At the initial stage of their existence, most jets 
are characterized by homogeneous stretching throughout the length without concentrated deformation and 
with retention of a near-cylindrical or slightly conical shape. Figure 1 shows an x-ray pattern of an SCJ 
generated by a shaped charge at 70 #sec from the beginning of an explosion under laboratory conditions. In 
some cases, this stage is called the inertial stage. Stretching is then gradually localized in regions with many 
necks formed in the jet (the neck stage of stretching). As a result, the SCJ breaks up into a certain number 
of separate elements which do not vary in length thereafter. Figure lb shows an x-ray pattern of the same 
SCJ as in Fig. la, but for the later time. 

The character of SCJ breakdown into separate elements is different and depends on the characteristics 
of the material of the shaped-charge lining and on the geometrical and kinematic characteristics of SCJ such 
as the initial radii of the elements and the initial axial-velocity gradient. For example, high-gradient copper 
jets break up into elements in a surprisingly regular fashion, which is similar to the x-ray pattern of Fig. lb. 
The formation of geometrically similar separate elements with a developed neck with nearly zero radius is 
characteristic of this type of destruction (plastic failure). Failure of SCJ made of nickel, niobium, and pure 
aluminum occurs similarly. 

Failure of jets made of other materials is of a different character. For example, SCJ made of lead or 
tungsten fail in volume. This is illustrated by a lead jet in the x-ray patterns of Fig. 2 at three successive 
moments of time. In most cases, failure of jets that are formed by steel-lined shaped charges occurs as a 
"quasi-brittle" breakup, that  is, without tne formation of a pronounced neck. In some cases, a similar kind of 
failure is also typical of copper jets. Figure 3 shows an x-ray pattern of a massive low-gradient copper SCJ a t  

the moment of its breakup. 
The so-called coefficient of ultimate elongation, which is determined by the ratio of the total length 

of a jet element after breakup to its initial length, nul t = Alult/Alel, is a quantitative estimate of the ability 
of a SCJ to elongate without breakup. A common property of all materials under conditions of SCJ is their 
anomalously high plasticity in comparison with the static conditions. For example, after breakup the total 
length of the elements of a high-gradient copper SCJ is approximately a factor of 10 larger than the initial 
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length of the SCJ. Some sections of the SCJ undergo even a more considerable elongation prior to the breakup. 
For example, the value of the coefficient of ultimate elongation for niobium can reach n u l  t = 26. The so-called 
coefficient of inertial elongation hi, which separates the inertial and neck stages of SCJ deformation, is-regarded 
sometimes as an intermediate characteristic of the process. The number N and the sizes of separate elements 
formed during failure are also the basic quantitative characteristics of SCJ breakup. 

Stretching of a SCJ in free flight precedes its interaction with a barrier and determines directly the 
through-piercing action of the jet [2]. In fact, the known high penetrative power of shaped charges is realized 
precisely at the stage of jet stretching, and this apparently explains the great interest in this question in the 
literature (see, for example, [3-9]). 

In the present paper, we consider the behavior of a SCJ at the initial stage of its deformation when the 
jet elements retain a near-cylindrical shape, and the process of deformation localization and neck development 
has not yet started. The main results were obtained from computations on the basis of continuum mechanics. 
Not giving an answer to the question on the character of and on the reasons for a fairly definite breakup of the 
SCJ into separate elements, the results obtained, nevertheless, make it possible to determine the character 
of evolution of the stress-strain state of the SCJ during its inertial deformation and to get a preliminary 
insight into the mechanism of this process. The latter is of importance for clarifying the behavior of the SCJ 
in free flight and especially because it is impossible to measure directly the stress-state characteristics in 
superhigh-speed explosion-formed bodies. 

Let us consider the stretching of a cylindrical bar with initial length l0 and radius Ro under the action 
of the axial-velocity gradient Vz with its initial linear distribution Vz = ~z0z. This distribution is characterized 
by the initial strain rate gzo = Vo/lo, where V0 is the difference in axial velocities between the ends of the 
element and z is the axial coordinate reckoned from one of these ends. A similar model corresponds to an 
arbitrarily isolated SCJ element at the stage of uniform stretching which is investigated in the frame of 
reference related to one of its ends. This end is assumed to be fixed in the axial direction. 

An analytical solution of the problem of determining the stress-strain characteristics of such a bar is 
obtained under the following assumptions on the conditions of deformation and material characteristics: the 
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bar material is incompressible (p = P0 =cons t ) ,  inelastic-perfectly-plastic with yield point Y0 =cons t ,  and is 
subject to the yon Mises yield condition; stretching of the bar occurs at a constant value of the Lagrangian 
axial-velocity gradient OVz/Ozo = coast, where z0 is the axial Lagrangian coordinate of the bar particles. The 
latter assumption corresponds to the condition that the jet element is uniformly stretched with a constant 
difference in the velocity V0 = gzolo between the plane cross sections that bound the element in question or 
at a constant absolute axial velocity, which is in agreement with experimental data. A natural consequence 
of this assumption is retention of the cylindrical shape of the bar during its stretching. 

With allowance for the assumptions made above, one can establish an obvious relationship between 
the current and initial dimensions of the bar: IR 2 = loR~. Differentiating this relation with respect to time 
and extending the result to an arbitrary particle of the bar with the Eulerian radial coordinate r, we obtain 
an expression for the radial velocity component: Vr = - 0 . 5 r l / l .  When the coefficient of current elongation of 
the bar is defined as 

n = I/lo = (lo + Vot) / lo  = 1 + gz0t,  (1) 

the expressions for the radial- and axial-velocity components take the form 

Vr = 0.5r~zo/(1 + ez0t), Vz = Voz/l = ezOZ/(1 + ezot). (2) 

The components of the strain-rate tensor are determined in accordance with the known kinematic 
relations: 

er = OVr /Or  = - 0 . 5 ~ 0 / ( 1  + ezot) ,  eo = V r / r  = - 0 . 5 ~ z 0 / ( 1  + ~zot),  
(3) 

~ = OV~/Oz = ~zo/(1 + ~ o t ) ,  ~r~ = 0.5(OVz/Or + OV~/Oz) = O. 

The equality of the radial and tangential components of the strain-rate tensor and the absence of 
shear strains make it possible to obtain, using the Saint Venant-von Mises theory of plasticity, the following 
relations for the stress-tensor and stress-deviator components: ar = a0 and Srz = 0. In this case, the equation 
of motion for the radial velocity component is reduced to the form podVr[dt = Oar/Or or, with allowance for 
relations (2), to the form Oar/Or = (3/4)[gzo/(1 + gzot)]2r. 

With allowance for the fact that the radial stress ar is zero at the free surface r = R of the element. 
integration of the latter differential equation over the radial coordinate r at constant t ime t makes it possible 
to find the radial-stress distribution inside the element, whereas the von Mises plasticity condition, which is 
reduced in this case to the relation as - a~ = I~, yields a similar distribution of the axial stresses: 

ar = -(3/8)pO[~zO/(1 + ~z0t)]2(n 2 - r2); (4) 

o'~ = Yo - (3/8)po[~o/(1 + ~0t) ]2(n  2 - r2). (5) 

Relations of the type of (4) and (5) are given in [5, 9]. 
Using expressions (1)-(5), we can derive energy relations for an incompressible inelastoplastic bar 

stretched under the conditions considered. 
For example, the initial values of the kinetic energy of the radial Wr0 and axial W~0 motion of the bar 

particles are found in accordance with the following expressions: 

lo 

Wzo= f O.5po~ngdz(~.oz)2 .2 2 = mbezolo/6, 
0 

lo 
Wro / 0 .5po2rrdrdz(_rgzo/2)2 .2 2 = = mbezoRo/16,  

0 

where m b = po7rR2olo is the mass of the bar. The total initial kinetic energy W0 in the frame of reference 
related to the fixed end of the bar is expressed in the form 

.9 2 .2 2 
Wo = Wzo + Wro = rnbezolo/6 + rnbezoRo/16. (6) 
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Similarly, using the relation ~, = ~zo/n for the current and initial axial-velocity gradient and also the relation 
R = Ro/v/-ff for the initial and current radii of the bar, we determine the total current kinetic energy W in 
the form 

w = w ,  + w r  = .2 2 mbO, oR /(16n3). mbezolo/6 + (7) 

It follows from comparison of relations (6) and (7) that the kinetic energy of the axial motion of the 
bar particles remains invariable (W, = Wz0) during stretching. However, the radial-motion kinetic energy Wr 
decreases rather abruptly in inverse proportion to the cube of the coefficient of current elongation n. The 
dynamic stretching of the inelastoplastic bar is accompanied by energy dissipation and by a mechanical-to- 
internal energy transition. 

The magnitude of losses at tr ibuted to energy dissipation in plastic deformation is determined by 
integration of the energy equation in the adiabatic approximation /~ = o'iJ~ij/Po, where E is the specific 
internal energy of the bar particles and o "ij and gij are the components of the stress- and strain-rate tensors, 
respectively. With relations (3)-(5) taken into account, the differential energy equation is reduced to the form 

= (Yo/po)[e,o/(1 + ez0t)] which allows us to find the current value of the internal energy for the whole bar: 

t 

= m b / E d t =  mb(YO/Po ) In n. (8) Ed 
0 

As follows from the character of the distribution of the axial stresses az over the cross section of the 
bar, its stretching occurs in the presence of the axial force Fz which acts in each plane cross section of the 
bar including the end cross sections: 

R 

Fz = / 2 a ' r  dr~rz = 7rR2[y0 - (3/16)po~2zoR2/n 3] = 7rR2~rz~,v, 
0 

where a~v is the average axial stress over the bar cross section. The existence of the axial force F~ in 
the transverse cross section of the bar corresponds physically to the fact that the uniform stretching of an 
arbitrary isolated element of a SCJ takes place with a force interaction with the neighboring elements and is 
accompanied by the work done on them: 

t 

Ad ~ / dr. 

0 

The expression for this work has the following form: 

Ad=--mb(YO/Po) lnn  .2 2 - -  mbezoRo(1 -- n3)/n 3. (10) 

It is easily seen that,  for a dynamically stretching cylindrical inelastoplastic bar, the energy relations 
(6)-(8) and (10) correspond to the law of conservation of energy Wo = W + Ed + Ad. Since the kinetic 
energy of the axial motion is conserved Wz = Wzo, upon stretching of the bar this law takes the form 
Wro = Wr "4- Ed q- Ad. In accordance with this, in the course of stretching the initial kinetic energy of the 
radial motion of the jet particles partly dissipates and becomes the internal thermal energy. In addition, 
during the process considered, this energy is partly spent to sustain the deformation conditions (the work 
done on the surrounding SCJ elements) and partly remains active as the current kinetic energy of the radial 
motion Wr. 

Figure 4 shows some calculation results for the element of the middle section of a copper SCJ with 
initial radius R0 = 3.5 mm, initial axial-velocity gradient ez0 = 3.18 �9 105 sec -1, and yield point of the 
material ]I0 = 2 �9 10 s Pa. The calculations were carried out under laboratory conditions to provide an idea of 
the quantitative aspects of the process of stretching of a SCJ element considered within the framework of the 
model of a cylindrical incompressible inelastoplastic bar. 

Figure 4 shows distributions of the radial err (curves 1 and 3) and axial az (curves 2 and 4) stresses 
for times which correspond to the current coefficients of elongation nl = 2.4 and n2 = 3.5 and also to the bar 
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radius R1 = 0.65R0 and R2 = 0.54R0. Clearly, in most parts of the cross section, the SCJ element stretches 
initially under conditions of all-around compression. The sole exception is the zone adjacent to the outer 
surface where the axial stresses are stretching stresses. In the near-axial cross-section zone, the compressing 
stresses can, however, be rather strong. They are maximal at the axis of the bar (r = 0) at the time of 
onset of the deformation process (t = 0) and are determined, according to (4) and (5), by the value of the 
complex po~2zoR~ which specifies the initial specific (per unit volume) kinetic energy of the radial motion. 
As the bar elongates, its stress state tends to a state of uniaxial extension, while the radial and tangential 
stresses decrease monotonically, remaining compressive at the same time [see formulas (4) and (5)]. It follows 
from (9) that under conditions of all-around compression, the bar is, on the average, stretched if the initial 

poe~oRo/Yo >1 16/3. specific kinetic energy of the radial motion exceeds the yield point: .2 2 
Figure 5 shows the energy balance for the same SCJ element as in Fig. 4. One can see that the radial- 

motion kinetic energy Wr decreases rather abruptly and becomes negligible in comparison with the internal 
energy Ed. A considerable portion of the kinetic energy is spent for the work Ad done by this element on the 
neighboring elements. In this case, Ad increases at the initial stage of stretching - -  the element deforms and 
does work under conditions of all-around compression, as if it "pushes" the neighbors. However, beginning 
with a certain value of the coefficient of elongation, the work Ad decreases - -  the SCJ element is stretched 
by the stretching axial force Fz of interaction with the neighboring elements. 

The above results, which were obtained within the model of an incompressible inelastoplastic bar, have 
made it possible to find the range of the most important stretching and destruction characteristic of plastically 
destructible SCJ, namely, the coefficient of ultimate elongation: 

{/(3/16)poe~oR~/ro < nu~t < exp [p0~0R0~/(16Y0)]. 

Here the lower bound of the range is obtained from the condition of transition of a stress state upon stretching 
caused by the all-around compression, and the upper bound is obtained from the condition of complete 
dissipation of the initial kinetic energy of the radial motion under the assumptions that Ad = 0 and Wr/Wro << 
1. For the current coefficients of elongation n smaller than the lower bound at which the material inside the jet 
is compressed all-around, one should apparently exclude the possibility of developing and moreover completing 
the process of necking. The coefficients of elongation that are larger than the upper bound cannot be realized 
because of the "veto" imposed by the law of conservation of energy. The latter statement can be substantiated 
as follows. 

Experimental data show that in plastic failure, high-gradient SCJ break up into several tens of 
individual nongradient elements. In this case, the initial length 10 of each SCJ section formed during failure is, 
as a rule, of the order of tenths of the initial radius R0 for the corresponding section. Therefore, at the moment 
of onset of its deformation, the "surplus" kinetic energy of such a section (the kinetic energy of the axial and 
radial motion of material in the frame of reference related to the center of masses of this SCJ section and, 
later, the kinetic energy of the individual nongradient element formed from this section) is mainly determined 
by the kinetic energy of the radial motion, whereas its axial portion is negligible [see relation (6)]. 
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A separate nongradient element that is formed in plastic failure has no "redundant" kinetic energy - -  
each of these elements moves in space as a rigid unit. Therefore, for the SCJ which initially represents a set 
of interrelated sections and, eventually, is a set of separate elements formed from these sections, it is correct 
to suggest that the initial kinetic energy Wro of the radial motion serves as an upper bound for the energy 
spent for deformation of the corresponding SCJ elements and determines the maximum theoretically possible 
value of the coefficient of ultimate elongation r*ul t. Meanwhile the work Ad done by the interacting sections 
on one another should not have an effect on the maximum possible ultimate elongation and can be set equal 
to zero in an estimation, because the interacting forces between the sections which form individual elements 
are internal forces with respect to the SCJ as a whole and have no effect on its energy balance. 

Thus, in the present paper, we have analyzed a physicomathematical model for uniform stretching of 
a SCJ element as an incompressible cylindrical inelastic-perfectly-plastic bar. The model has made it possible 
to get some ideas on the character of variation of the kinematic, dynamic, and energetic characteristics of this 
process and also to establish bounds for finding the basic quantitative characteristic of jet fracture, namely. 
the coefficient of ultimate elongation. The next step to refine these ideas should apparently be connected with 
taking account, in the model, of the compressibility and elastoplastic characteristics inherent in the material 
of shaped-charge jets. 
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